[1] S. J. Avis and C. J. Isham, “Generalized Spin Structures on Four Dimensional Space-Times,” Commun. Math. Phys. 72 (1980), 103-118,

[2] J. Baez and J. P. Muniain, Gauge Fields, Knots, and Gravity (World Scientific, 1994)

[3] M. do Carmo, Riemannian Geometry (Birkhäuser Boston, 1992)

[4] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, 2003)

[5] T. Frankel, The Geometry of Physics (Cambridge University Press, 1997)

[6] T. Frankel, Gravitational Curvature (W H Freeman and Company, 1979)

[7] J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists (Cambridge University Press, 1997)

[8] R. Geroch, Mathematical Physics (University of Chicago Press, 1985)

[9] M. Göckeler and T. Schücker, Differential Geometry, Gauge Theories, and Gravity (Cambridge University Press, 1987)

[10] A. Gray, Alfred, “The volume of a small geodesic ball of a Riemannian manifold,” The Michigan Mathematical Journal 20 (1974), no. 4, 329-344,

[11] A. Hatcher, Algebraic Topology (Cambridge University Press, 2002)

[12] A. Hatcher, Vector Bundles and K-Theory (, 2003)

[13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (John Wiley & Sons, 1963)

[14] H. B. Lawson, Jr. and M. Michelsohn, Spin Geometry (Princeton University Press, 1989)

[15] C. Misner, K. Thorne and J. Wheeler, Gravitation (W H Freeman and Company, 1973)

[16] P. Petersen, Riemannian Geometry (Springer, 2006)

[17] R. Wald, General Relativity (University of Chicago Press, 1984)

[18] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Springer-Verlag, 1983)

An Illustrated Handbook